

Post-Quantum Cryptography: prime questions = primary questions

HACKTIVITY

Áron SZABÓ

Hacktivity 2015 Budapest October 9, 2015

Post-Quantum Cryptography: classical computers and quantum computers

mathematics of cryptographic primitives and algorithms

• MD5 collisions: Flame, modified signed Windows updates

implementations of cryptographic primitives and algorithms

- kleptography:
- entropy:
- usage:
- code audits:

Dual_EC_DRBG (PRNG) Android JCA (Bitcoin ECDSA), OpenSSL (PRNG) ECDSA (Sony PlayStation 3) SSL/TLS: ECDHE vs. RSA (PRNG vs. PFS) TrueCrypt

IF ALL DEVELOPER COMPANIES USE THE SAME CRYPTOGRAPHIC IMPLEMENTATIONS

WHY DO THEY SAY THEY ARE MORE SECURE THAN THEIR COMPETITORS?

Post-Quantum Cryptography: classical computers and quantum computers

behaviours of cryptographic primitives and algorithms

- superposition: classical computer vs. quantum computers
- adiabatic qc:

Post-Quantum Cryptography: classical computers and quantum computers

"Imagine that it's fifteen years from now. Somebody announces that he's built a large quantum computer. RSA is dead. DSA is dead. Elliptic curves, hyperelliptic curves, class groups, whatever, dead, dead, dead. So users are going to run around screaming and say 'Oh my God, what do we do?' Well, we still have secret-key cryptography, and we still have some public-key systems. There's hash trees. There's NTRU. There's McEliece. There's multivariate-quadratic systems."

http://pqcrypto.org/

OK, but why? Shor's algorithm (finding order of a group) and Grover's algorithm runs faster...

So, now what? signature: we can wait until real quantum computer... encryption: now it is already too late! Quantum-Safe Perfect Forward Secrecy (QSPFS)

Shor's algorithm n = 15 // to-be-factorized integer a = 7 // random number, where "a < n"</pre> Calculate "r" (period/order): $f(x) = a^x \mod n = f(x + r) = a^x + r \mod n$ 1. $7^{1} \mod 15 = 7$ 2. $7^2 \mod 15 = 4$ 3. $7^3 \mod 15 = 13$ 4. $7^4 \mod 15 = 1$ 5. $7^5 \mod 15 = 7$ // f(1) = f(5)6. $7^{6} \mod 15 = 4$ 7. ... // period/order r = 4

Shor's algorithm

Calculate "gcd(a^(r/2) +/- 1, n)" (greatest common divisor):

p = gcd(48, 15) = ?
q = gcd(50, 15) = ?

//Euclidean algorithm: gcd(48, 15) => 48 = q[0] * 15 + r[0] gcd(15, 3) => 15 = q[1] * 3 + r[1] The final non-zero remainder is r[0] = 3 gcd(50, 15) => 50 = q[0] * 15 + r[0] gcd(15, 5) => 15 = q[1] * 5 + r[1] The final non-zero remainder is r[0] = 5 p = gcd(48, 15) = 3
// q[0] = 3, r[0] = 5
// q[1] = 3, r[1] = 0
// q[1] = 3, r[1] = 0
// q[1] = 3, r[1] = 0
// q[1] = 3, r[1] = 15

q = gcd(50, 15) = 5

// prime factor of "n = 15"

ETSI: Quantum Safe Cryptography v1.0.0 (2014-10)

"[...] symmetric key algorithms like AES that can be broken faster by a quantum computer running Grover's algorithm than by a classical computer. [...] This is to say that AES-128 is as difficult for a classical computer to break as AES-256 would be for a quantum computer."

Algorithm	Key Length	Effective Key Streng	gth / Security Level
	-	Conventional Computing	Quantum Computing
RSA-1024	1024 bits	80 bits	0 bits
RSA-2048	2048 bits	112 bits	0 bits
ECC-256	256 bits	128 bits	0 bits
ECC-384	384 bits	256 bits	0 bits
AES-128	128 bits	128 bits	64 bits
AES-256	256 bits	256 bits	128 bits

 Table 1 - Comparison of conventional and quantum security levels of some popular ciphers.

Note : Effective key strength for conventional computing derived from NIST SP 800-57 "Recommendation for Key Management"

About standards and papers

Post-Quantum Cryptography: classical computers and quantum computers

Hash-based:

- hash functions, HMAC structures are quantum safe
- signature (Lamport, Merkle etc.)

Lattice-based:

- shortest/closest vector problem (László Lovász, Miklós Ajtai)
- signature, encryption (GGH, NTRU etc.)

Multivariate equations-based:

• signature (UOV, Oil and Vinegar etc.)

Code-based:

- syndrome decoding problem, error-correcting codes
- signature, encryption (McEliece, Niederreiter etc.)

Symmetric key-based:

encryption (AES, Twofish etc.)

About standards and papers

IETF: NTRU Cipher Suites for TLS (2001-07-03) https://tools.ietf.org/html/draft-ietf-tls-ntru-00

IETF: Hash-Based Signatures (2014-07-04) https://tools.ietf.org/html/draft-mcgrew-hash-sigs-02

ETSI: Quantum Safe Cryptography v1.0.0 (2014-10) https://portal.etsi.org/Portals/0/TBpages/QSC/Docs/Quantum_Safe_White paper_1_0_0.pdf

IETF: XMSS: Extended Hash-Based Signatures (2015-03-23) https://tools.ietf.org/html/draft-huelsing-cfrg-hash-sig-xmss-00

IETF: Use of the Hash-based Merkle Tree Signature (MTS) Algorithm in the Cryptographic Message Syntax (CMS) (2015-03-31) https://tools.ietf.org/html/draft-housley-cms-mts-hash-sig-02

About standards and papers

Daniel J. Bernstein, Daira Hopwood, Andreas Hülsing, Tanja Lange, Ruben Niederhagen, Louzia Papachristodoulou, Michael Schneider, Peter Schwabe, Zooko Wilcox-O'Hearn SPHINCS: practical stateless hash-based signatures http://sphincs.cr.yp.to/

Daniel Augot, Lejla Batina, Daniel J. Bernstein, Joppe Bos, Johannes Buchmann, Wouter Castryck, Orr Dunkelman, Tim Güneysu, Shay Gueron, Andreas Hülsing, Tanja Lange, Mohamed Saied Emam Mohamed, Christian Rechberger, Peter Schwabe, Nicolas Sendrier, Frederik Vercauteren, Bo-Yin Yang

Post-Quantum Cryptography for Long-Term Security (2015-09-07) http://pqcrypto.eu.org/docs/initial-recommendations.pdf

KISS ("Keep It Simple Stupid") principle has advantages:

Zooko Wilcox-O'Hearn: Tahoe-LAFS mailing list

"That is: a hash-based digital signature scheme can be broken if you can break the underlying secure hash function. All other digital signature schemes can be broken if you can break the secure hash function that they use for generating a message representative, *or* if you can break the digital signature scheme itself."

Daniel J. Bernstein, Johannes Buchmann, Erik Dahmen: Post-Quantum Cryptography

"To me hash-based cryptography is a convincing argument for the existence of secure post-quantum public-key signature systems."

LDWM (Lamport-Diffie-Winternitz-Merkle)

• define the parameters of algorithm (e.g. LDWM_SHA256_M32_W1)

Parameter Name	Parameter Value
Name	LDWM_SHA256_M32_W1
ц	SHA256
п	collision-resistant hash function H
F	SHA256
Г	one way (preimage resistant) function F
	32
ш	the length in bytes of each element of an LDWM signature
	32
"	the length in bytes of the result of the hash function
	1
w	the Winternitz parameter; it is a member of the set { 1, 2, 4, 8 }
	256
u	u = ceil(8 * n / w)
	9
×	$v = ceil((floor(lg((2^w - 1) * u)) + 1) / w)$
	7
ls	the number of left-shift bits used in the checksum function C
	ls = (number of bits in sum) - (v * w)
	265
р	the number of m-byte string elements that make up the LDWM signature
	p = u + v

LDWM (Lamport-Diffie-Winternitz-Merkle)

- generate private key chunks
- LDWM private key chunks can be applied to create signatures at most once!

LDWM is a One-Time-Signature scheme (OTS)!

Key Element Index	OTS Private Key 0 Element
(i)	(x[i])
	calculated
0	5747aadf4671636b5d6a8d6605c0fd40e822e13a2be4a8ea234d925de08def3d
1	c4497e8b070aa90306b3be32edaeabd983b13734aee1e81764be21897aa14feb
263	62f6f3e3a6fa657f8bf947ef236fc914faa47a3a141e330acc5d6d59d807e094
264	a4dc636971aefedee24820ed22f18849c8a28d28911d841c969af589de1d6397

LDWM (Lamport-Diffie-Winternitz-Merkle)

 key structure contains: ID of LDWM parameter set, private key chunks e.g. 83886085: ldwm_sha256_m32_w1 = 0x05000005 (IETF)

78		ASN.1 Editor - Opening File: end_user_private_key.dat	-	×	
<u>F</u> ile	<u>V</u> iew	<u>T</u> ools <u>H</u> elp			
2					
7 2 ((0,9016)) SEQUENCE			^
	(4,4)) INTEGER : '83886085'			
	(10,3	32) INTEGER : '5747AADF4671636B5D6A8D6605C0FD40E822E13A2BE4A8EA234D925DE08DEF3	D'		
	(44,3	32) INTEGER : 'C4497E8B070AA90306B3BE32EDAEABD983B13734AEE1E81764BE21897AA14FE	8'	- 1	
	(78,3	32) INTEGER : '91AA628F11511FF63E78D26A55B25354610006EE19838214C377F259B420A76	8'		
	(112,	,32) INTEGER : '1E0D4D095DE422F4B84620308C78483E13F254673A97F283C333FFFAC3F7E0	91'		
	(146,	,32) INTEGER : '7D0B4A3CE78A4676D145F9914E53E05F34B0B476DD68036191FC7B143470ED	09'		
	(180,	,32) INTEGER : 'CB99DA4933EE26B3BC20837077C44A9AEB5107DC3C11CC52B4A61CF2AAFC31'	78'		
	(214,	,32) INTEGER : 'B6175DDAD472A745C17153AA6ECFC141646401C23B7F4B50DB33A5FEF968F8	38'		
	(248,	,32) INTEGER : '68D121FA4BFA48C701A6ABDA641E6958D43DE86CA8112551E7C07362317468	03'		
	(282,	,32) INTEGER : 'C8548DE87BBBE5F6614B343138851C1CE6F0D09F16BFFD94A40AB9A24291A13	36'		
) (316,	,32) INTEGER : '55815497E58DBB1618969F430F0E58FE7A7E144F88740D7D3732D2D00F4888	4E'		
	(350,	,32) INTEGER : '6826411281F8B2B6708C9B5DCE302F9D2C667F9410797CD06F34028DBDDC3D	24'		
	(384,	,32) INTEGER : '2D52463EB571A996D11D04231BA8ED11DFF92333666A9FCA8A2056AC5E00110	36'		
	(418,	,32) INTEGER : 'C1EA3C81ADB8D9D9D74A6F6199EF372B570BDBC5717D0EC10E93996C1FD4A8	61'		
	(452,	,32) INTEGER : '26185AA1732C8B7CACAFB61C2402E8DF00DB5A68C8AD3A08EB8C7922A0D27C	BA'		
	(486,	,32) INTEGER : '6ACCE6F82247C4DCE9AA2DB85D4F64BF5511AB0103F56F12A7E76F95AD7C5D	29'		
	(520,	,32) INTEGER : '9E22A811E515F67CDE288CF4E1C5D0ED10BFE6A0F6B4DA5334C098964BC1E3	F2'		
	(554,	,32) INTEGER : '10BB4D6583C32EFC5B6C2C0A279EA9D43F163EEF5124E2738AF4F811DB8B1E	F4'		
	(588,	,32) INTEGER : '1E5A3FE702DAA159608B5EA2AF955A3FD606B4DDF60565229731F5530510F30	C9'		
	(622,	,32) INTEGER : '5E4BC215C4A44365BD1FA541083CF2C78440043A65F992D7A0D9645A27A202'	7E'		

LDWM (Lamport-Diffie-Winternitz-Merkle)

- derive public key chunks from private key chunks (hash function) concatenate public key chunks and hash them to get public key
- Winternitz: y[i] = F^e(x[i]), where e = 2^w 1

"The parameter w can be chosen to set the number of bytes in the signature [...] LDWM with w=1 has been shown to be existentially unforgeable under an adaptive chosen message attack [...]."

Key Element Index (i)	OTS Public Key 0 Element $(y[i] = F^1(x[i]))$ calculated
0	f085b6d2ef122f1809b070ac52d49e8b1b16c2c8ef413daef2cb779a56ff9452
1	28e017a33bc500da868ed6c2116f25ed46328a69e0fc60588f5110355abaa191
263	ca6728f79d7ecd3a42ebcef1c2706e466b47daca09e49ddc16d2744468cce9b3
264	372045a7cce775ee6fb0b66f89c6b6aef6b93ece08a84f0125b5034f92b9bf0b
Key Element Index (i)	OTS Public Key 0 (H(y[0] y[1] y[p-1])) calculated
0	3a46ee12b5b54370239eeaf66572ba54492ea4abdf177c5831bc7ee2d886def1

LDWM (Lamport-Diffie-Winternitz-Merkle)

 key structure contains: ID of LDWM parameter set, public key e.g. 83886085: ldwm_sha256_m32_w1 = 0x05000005 (IETF)

18			ASN.1 Editor - Ope	ning File: end_us	er_public_key.dat		-	×
<u>F</u> ile	<u>V</u> iew	<u>T</u> ools <u>H</u> elp						
2			※ 🗙 🎦					
,0 🔁	,40) :	EQUENCE						
	(2,4)	INTEGER : '83	86085'					
	(8,32) INTEGER : '3	46EE12B5B54370239EE	CAF66572BA54492E	A4ABDF177C5831BC7EE2	2D886DEF1'		

LDWM (Lamport-Diffie-Winternitz-Merkle)

 X.509 certificate contains: ID of LDWM parameter set, public key, OID e.g. 1.3.6.1.4.1.8301.3.1.3.1.1.2: OTS with SHA-256 (TU Darmstadt)

ASN.1 Editor - Opening File: end_user_public_certificate.cer - - ×
<u>F</u> ile <u>V</u> iew <u>T</u> ools <u>H</u> elp
Te (0,892) SEQUENCE
🖕 📲 (4,356) SEQUENCE
E. C (8,3) CONTEXT SPECIFIC (0)
🗄 📴 (24,13) SEQUENCE
🗄 📴 (39,39) SEQUENCE
🗄 📲 (80,30) SEQUENCE
□
(152,13) OBJECT IDENTIFIER : : '1.3.6.1.4.1.8301.3.1.3.1.1.2'
(167,0) NULL
⊡ IIII (169,43) BIT STRING UnusedBits: 0
⊡ 🔚 (172,40) SEQUENCE
(174,4) INTEGER : '83886085'
(180,32) INTEGER : '3A46EE12B5B54370239EEAF66572BA54492EA4ABDF177C5831BC7EE2D886DEF1'
⊞… C (214,147) CONTEXT SPECIFIC (3)
E-T= (364,13) SEQUENCE
(366,9) OBJECT IDENTIFIER : : '1.2.840.113549.1.1.11'
(379,513) BIT STRING UnusedBits: 0 : '8B8E6523243929D305DFA158AEDD58C193140DE6E4A34E313E6649616C

LDWM (Lamport-Diffie-Winternitz-Merkle)

 X.509 certificate contains: ID of LDWM parameter set, public key, OID e.g. 1.3.6.1.4.1.8301.3.1.3.1.1.2: OTS with SHA-256 (TU Darmstadt)

Certificate	×		Certificate	×	Certificate	×
Certificate General Details Certification Path Certificate Information This certificate is intended for the following purpose • Proves your identity to a remote computer Issued to: Aron Szabo Issued br: Intermediate CA	Certificate eneral Details Certification Path Image: Certificate Information This certificate is intended for the following purpose(s): • Proves your identity to a remote computer Issued to: Aron Szabo Issued by: Intermediate CA		X Certificate General Details Certification Path Show: <all> Field Value Field Value Valid from 2015. augusztus 1. 22:00:00 Valid to 2017. augusztus 1. 22:00:00 Valid to 2017. augusztus 1. 22:00:00 Subject Aron Szabo, HU Public key 1.3.6.1.4.1.8301.3.1.3.1.1.2 Subject Key Identifier 6d 7e 4c 04 78 c2 1f 0b 8d fe Subject Key Identifier 6d 7e 4c 04 78 c2 1f 0b 8d fe Subject Key Identifier 6d 7e 4c 04 78 c2 1f 0b 8d fe Subject Key Identifier 6d 7e 4c 04 78 c2 1f 0b 8d fe Subject Key Identifier 6d 7e 4c 04 78 c2 1f 0b 8d fe Subject Key Identifier 5d 7e 4c 04 78 c2 1f 0b 8d fe Subject Key Identifier 5d 7e 4c 04 78 c2 1f 0b 8d fe Subject Key Identifier KeyID=27 5e 32 fa 41 c7 ed 0 Subject Key Identifier KeyID=27 5e 32 fa 41 c7 ed 0 Subject Key Identifier KeyID=27 5e 32 fa 41 c7 ed 0</all>		Certificate General Details Certification Path Certification gath Certification gath Aron Szabo	×
Issued by: Intermediate CA Valid from 2015.08.01. to 2017.08.01. Install Certificate Issuer S	atement		Edit Properties Copy to File OK		View Certifica Certificate <u>s</u> tatus: This certificate is OK.	OK

LDWM (Lamport-Diffie-Winternitz-Merkle)

- the data to be signed is also needed, of course...
- this input data can be any binary string (as usual)...

Data Element Index (i)	ASCII Representation / Hexadecimal Byte Values
0	toBeSigned / 746f42655369676e6564
Data Element Index	Hexadecimal Byte Values
(i)	
0	24966de3536df15b186a13fe5ed8b8ad1def0439147d177a82ab88b65e91e4eb

LDWM (Lamport-Diffie-Winternitz-Merkle)

- derive signature chunks from private key chunks (hash function)
- checksum is also needed as input parameter to generate signature
- signature: y[i] = F^a(x[i]), where a = w-bit values based on H(message)

Data Element Index (i)	OTS Checksum 0 (SUM((2^w - 1) - coef(S, i, w))) calculated
0 (hex)	7a
0 (int)	122
OTS Element Index	OTS Signature 0 Element
(i)	$(y[i] = F^{A}a(x[i]))$ calculated
0	5747aadf4671636b5d6a8d6605c0fd40e822e13a2be4a8ea234d925de08def3d
1	c4497e8b070aa90306b3be32edaeabd983b13734aee1e81764be21897aa14feb
263	ca6728f79d7ecd3a42ebcef1c2706e466b47daca09e49ddc16d2744468cce9b3
264	a4dc636971aefedee24820ed22f18849c8a28d28911d841c969af589de1d6397

LDWM (Lamport-Diffie-Winternitz-Merkle)

 derive signature chunks from private key chunks (hash function) e.g. 83886085: ldwm_sha256_m32_w1 = 0x05000005 (IETF)

8		ASN.1 Editor - Opening File: data_signature_public	.dat	-	×	
<u>F</u> ile	<u>V</u> iew	<u>T</u> ools <u>H</u> elp				
2	3	BEE <mark>x × 1</mark>				
) چ	,9016)	6) SEQUENCE				^
	(4,4)	4) INTEGER : '83886085'				
	(10,3	,32) INTEGER : '5747AADF4671636B5D6A8D6605C0FD40E822E13A2BE4A8EA	234D925DE08DEF3	D'		
	(44,3	,32) INTEGER : 'C4497E8B070AA90306B3BE32EDAEABD983B13734AEE1E817	64BE21897AA14FE	в'	- 1	
	(78,3	,32) INTEGER : '83CEC6A067F352E824E5894BCE5DA8EFDBF04C7535D97D08	95313CE6CA7C0C2	в'		
	(112,	2,32) INTEGER : '1E0D4D095DE422F4B84620308C78483E13F254673A97F28	3C333FFFAC3F7E0	91'		
	(146,	5,32) INTEGER : '7D0B4A3CE78A4676D145F9914E53E05F34B0B476DD68036	191FC7B143470ED	D9'		
	(180,	0,32) INTEGER : '0E1787FEE9BC48C9D1948A155F2AA8EDB80DA9F77AE0479	5C7812B92F098B3	A1'		
	(214,	4,32) INTEGER : 'B6175DDAD472A745C17153AA6ECFC141646401C23B7F4B5	ODB33A5FEF968F8	38'		
	(248,	8,32) INTEGER : '68D121FA4BFA48C701A6ABDA641E6958D43DE86CA811255	1E7C07362317468	D3'		
	(282,	2,32) INTEGER : '9725E61E25BFEFC154570B68DA93269AD67BB345F9285C1	492B06348ED9691	30'		
	(316,	5,32) INTEGER : '55815497E58DBB1618969F430F0E58FE7A7E144F88740D7	D3732D2D00F4888	4E'		
	(350,	0,32) INTEGER : '6826411281F8B2B6708C9B5DCE302F9D2C667F9410797CD	06F34028DBDDC3D	24'		
	(384,	4,32) INTEGER : 'F0A800AF46E9594CECD63EF45D8E6866F0876016B087AEB	80F8738F97B7C87	6B'		
	(418,	8,32) INTEGER : 'C1EA3C81ADB8D9D9D74A6F6199EF372B570BDBC5717D0EC	10E93996C1FD4A8	61'		
	(452,	2,32) INTEGER : '02D63BCE693757582BD5F2C2BD5383730B3CDA36F1CFAA2	2FDFBF0FD4C5681	FB'		
	(486,	6,32) INTEGER : 'C7D811C13BFAC172226D0042161DDE687FBEB1431D2268C	64F37A3FBAB061A	6A'		
	(520,	0,32) INTEGER : '9E22A811E515F67CDE288CF4E1C5D0ED10BFE6A0F6B4DA5	334C098964BC1E3	F2'		
	(554,	4,32) INTEGER : '10BB4D6583C32EFC5B6C2C0A279EA9D43F163EEF5124E27	38AF4F811DB8B1E	F4'		
	(588,	8,32) INTEGER : '305B16A3EB5159E6213A994888828158E46AE61EA365868	046EB6139A771C1	A1'		
	(622,	2,32) INTEGER : 'B10BD593BD8989B7D3A61412949917E6E415684DF0F61C6	26C975D590D5614	77'		

LDWM (Lamport-Diffie-Winternitz-Merkle)

derive public key chunks from signature chunks (hash function)

```
if (derived public key from signature ==
    retrieved public key from X.509 certificate)
{
    verification result is "successful"
}
else
{
    verification result is "failed"
}
```

OTS Element Index	OTS Checksum 0 and OTS Signature 0 Verification Result
(i)	calculated
0	TRUE
	••••

LDWM (Lamport-Diffie-Winternitz-Merkle)

On one hand, be careful when...

- applying secure PRNG and secure hash function to generate key chunks
- managing private key states (deletion after signature creation: user/CA)

LDWM (Lamport-Diffie-Winternitz-Merkle)

- ... but on the other hand, it is
- ideal for human usage (such as on the field of e-government, e-voting)
- easy to implement and easy to use
- simple and secure, because cryptographic layer is based just on hash functions

Thank you!

HACKTIVITY

Áron SZABÓ

pqcrypto_LDWM.PHP http://sourceforge.net/projects/pqcrypto-ldwm-php/

